Crypto X AI 的“包办婚姻”:从表面冲突到协调、数据以及训练层的创新
作者:brody
编译:深潮TechFlow
从表面上看,“加密货币与人工智能似乎是一种强迫结合。
然而,在这些不对称中存在着潜在机会,风险与回报的比例似乎严重偏向于上行。这就是值得我们花时间深入思考的原因。
我经常被问到我对加密货币与人工智能融合的看法,这促使我开发了这个简单的框架:
-
区块链在哪些方面为人工智能应用引入了全新的优势?
-
AI 技术栈中的哪些组件通过去中心化协议得到了优化?
-
开源的去中心化 AI 应用在哪些方面达到了与其闭源竞争者相当的性能?
从整体来看,这里有几个我关注的关键领域,旨在回应这些问题:
区块链在哪些方面为人工智能开发解锁了全新的优势?
协调层:这些协议旨在协调 AI/ML 开发者,共同创建“智能,通过提供他们的模型和资源换取奖励,这些奖励通常基于所产生智能的价值。
这就是我对 Bittensor 如此热情的原因。它正在大规模实现这一目标(目前有 48 个子网,并在不断扩展),拥有深厚的人才护城河,以及极少数生态系统能够效仿的热情代币持有者社区。
另一方面来看,Sentient、Allora 和 Nous Research 等团队也在进行类似的倡议,尽管它们的协议设计和方向有所不同。
激励对齐是区块链在最终阶段能够有效运作的核心原因之一,而这种应用对开源 AI 开发的支持是基本的。
人们正在逐渐意识到这一点。
AI 技术栈中的哪些组件通过去中心化协议得到了优化?
数据:获取高质量、经过验证和稳健的数据集对人工智能至关重要,但目前这仍然是一个巨大的瓶颈。数据收集过程中的优化将推动我们突破“数据壁垒。
我们密切关注的几个团队是 Grass 和 Vana,它们都在通过激励和所有权创建新的高效和优化的数据收集机制。
简而言之,Vana 使数据 DAO(去中心化自治组织)得以实现,允许用户为独特的数据集做出贡献,并根据 AI 开发者对特定数据的需求来获得相应的奖励。
在这个领域中,正在测试几种方法论,所有这些方法论在客观上都优于它们的 Web 2 同类产品。
数据 DAO 示例
开源的去中心化 AI 应用程序在哪些方面的性能与其闭源同类产品达到了平衡?
分布式模型训练(Distributed Model Training):
免责声明:本站所有内容不构成投资建议,币市有风险、投资请慎重。
- FTFTX资讯